

EXTERNALLY HEATED DESICCANT COMPRESSED AIR DRYERS

KHP SERIES

KHP SERIES DRYERS REDUCE PURGE AIR ENERGY COSTS

For decades, compressed air users have relied on Kemp to deliver technology that reduces the cost of operation and improves the reliability of air driven processes. The KHP Series is engineered to deliver ISO 8573.1 Air Quality and reduce purge air consumption. In combination with our advanced Ambient Air Amplification (A³) Purge Technology,™ we offer externally heated purge desiccant dryers with dew point performance guaranteed from 300 to 3,200 scfm.

KHP SERIES DRYERS: -4°F to -40°F PRESSURE DEW POINTS

Designed for applications that were previously forced to accept a -40°F pressure dew point when simple protection against seasonal freezing is the issue. The standard design delivers ISO 8573.1 dew points between Class 2 and Class 3 automatically. Class 2 (-40°F) dew points protect against freezing during low ambient conditions and Class 3 (-4°F) dew points keep your air system bone dry during the heat of summer. Applications that require Class 2 (-40°F) dew points year round simply need to select the Jet Blower option package.

THE KEMP GUARANTEE

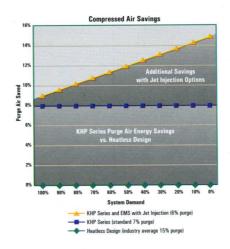
Kemp guarantees that KHP Series dryers will produce the design dew point while operating continuously at maximum rated flow (100% duty cycle) at CAGI ADF 200 inlet standards of 100°F inlet temperature and 100% relative humidity at 100 psig.

ISO 8573.1 AIR QUALITY STANDARDS

				Press	ure	Oil, A	erosol,
Class	Solid	Particles, (d	mm)	Dew F	oint	Liquid	Vapor
	$0.10 < d \le 0.5$	$0.5 < d \le 1.0$	$1.0 < d \le 5.0$	°C	°F	mg/m³	ppm w/w
0		As Specified		As Spe	cified	As Sp	ecified
1	100	1	0	≦.70	-94	≦0.01	0.008
2	100,000	1,000	10	≦-40	-40	≦0.1	0.08
3	-	10,000	500	≦-20	-4	≦1	0.8
4		-1.1	1,000	≦+3	38	≦5	4
5	-	-	20,000	≦+7	45	>5	>4
6				≦+10	50		
				Liquid Wa	ter g/m³		
7	DESCRIPTION OF THE PARTY OF THE			Cw≦	0.5		
8				0.5 < 0	≤ 05		
9				5 <cw< td=""><td>ı≦10</td><td></td><td></td></cw<>	ı≦10		
	- Selective constitution of the second	Por I	SO 8573.1. 200	11/F)			

Per ISO 8573-1: 2001(E)

ADVANCED TECHNOLOGY


OPTIONAL JET BLOWER ENERGY MANAGEMENT SYSTEM

The EMS uses rugged temperature-& humidity-sensing technology that does not require calibration. Constant desiccant bed monitoring ensures stable dew point control. Algorithm-based A³ Purge Technology™ controls precisely engage the Jet Blower when needed to manage the bed regen-eration cycles and boost the airflow through the tower. Compressed purge air volume is reduced, further optimizing energy conservation.

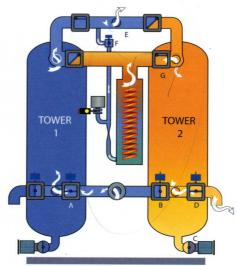
MAXIMUM SAVINGS AND -40°F PRESSURE DEW POINT

Select a Jet Blower (option A or B) option package to realize fast returns-on investment. The A3 Purge Technology™ is controlled by the engagement cycles of the Jet Blower. Energy consumption to regenerate the desiccant bed mirrors your plant air demands. This process is governed by algorithmic logic embedded into the EMS Controller. Consistent -40°F pressure dew points are delivered while saving at least 9% on compressed purge air costs. In many applications, the Jet Blower's compressed purge air requirements (6% or less) afford the selection of a smaller air compressor. System efficiencies become linear to the energy-saving potential of the dryer. Once the off-line desiccant bed has been regenerated, zero compressed purge air is required. This represents compressed air savings of up to 15% as compared to typical heatless designs.

ANNUAL SAVINGS VS. HEATLESS DESIGN (1050 scfm System Profile Comparison)

Air Capacity	Air Demand	Tir (per s			KHP Series Savings	
Percent 100	(scfm) 1050	Percent 40	Hours 3.504	Standard Design \$4,391	Includes Option A or B \$4,940	Savings with A or E \$549
90	945	5	438	\$549	\$659	\$110
75	788	15	1,314	\$1,647	\$2,162	\$515
50	525	15	1,314	\$1,647	\$2,470	\$823
35	368	20	1,752	\$2,196	\$3,541	\$1,345
20	210	5	438	\$549	\$947	\$398
Average	555	100	8,760	\$10,979	\$14,719	\$3,740

Annual Savings (optional EMS with Jet Blower vs. standard KHP)\$3,740 EMS option A- payback within 8.2 months


HOW IT WORKS

STANDARD DESIGN:

Moist, filtered compressed air enters the pressurized on-line desiccant-filled drying Tower 1 through valve (A). Up-flow drying enables the desiccant to strip the air stream of moisture. Clean, dry compressed air exits through valve (E) to feed the air system. Tower 2 (when in regeneration mode) closes valve (B), then depressurizes to atmosphere through muffler (C). Valves (D & G) open and the heater turns on. A portion of dry compressed air (purge air) is diverted before exiting (E) and passes through the heater. Hot, dry purge air desorbs the moisture from the desiccant as it flows down through Tower 2 to exit at valve (D). Once desorbed, the heater turns off and cool, dry purge air continues to pass until the desiccant bed is cooled. Finally, valve (D) closes and Tower 2 is repressurized. At a fixed time interval, valve (B) will open and Tower 2 will be placed on-line to dry the bed and valves (A & D) will close. Operations will switch and Tower 1 will be regenerated.

JET BLOWER OPTION PACKAGE

Whereas the standard design operates on a fixed time interval basis, Jet Blower versions manage the drying and regeneration cycles with precision for systems with variable air demands. The on-line Tower will continue to dry the air stream until the "moisture front" is detected. Only then will the switchover sequence begin. In regeneration mode, the Jet Blower is engaged and a portion of dry purge air exits valve (F) to be injected into the V-axis of the Jet Blower. A³ Purge Technology™ draws ambient air into the X-axis to desorb the desiccant at better than 1:1 amplification. Sensors detect the retreat of the moisture front, disengages the Jet Blower, eliminates the purge air usage and initiates the repressurization cycle. The dry, pressurized off-line Tower will remain ready and isolated until sensors detect that the online drying Tower is saturated. Then, the switchover will occur and the process will repeat.

Shown with optional Jet Blowe

PURGE AIR OPERATING COST COMPARISON

Annual Cost of Compressed Purge Air (constant operation at average air demand)

		negen	Ciation Cost	by reciliology
Avera	ge Air	Heatless	KHP	KHP
Dem	and	Design	Series	Series
		(Std. 15%	(Std. 7%	(w/ Optional Jet
Percent	(scfm)	Purge)	Purge)	Blower 6% purge)
100%	1050	\$20,585	\$9,606	\$8,234
90%	945	\$20,585	\$9,606	\$7,411
75%	788	\$20,585	\$9,606	\$6,176
50%	525	\$20,585	\$9,606	\$4,117
35%	368	\$20,585	\$9,606	\$2,882
20%	210	\$20,585	\$9,606	\$8,234

DEW POINT PERFORMANCE TABLE

¹ Assumes 8760 hours, 10 cents per KwH, 5 scfm per HP

		Pres	sure	EMS
Contr	oller	Dew	Point	Energy Savings
		-40°F	-4°F	Automatic
Stand	dard	S	G	
Jet Blowe	er Option	G		/
S - seasonal	G - guarante	ed 🗸 -	included	

KHP SERIES FEATURES AND SPECIFICATIONS

KHP SERIES PRODUCT FEATURES

Controller		sure Point	Jet Blower	EMS Control		cuum scent Text	Languages	Power Recovery	Dry Contacts		verlay		t Graphics and Ds with Text D		tors -
Model	per ISO ISO Class 3 -4°F (-20°C)	ISO Class 2 -40°F	Venturi Blower	Automatic Energy Savings	Digital Dew Point Monitoring	2 Line, 16 Characters (high-visibility in darkness or sunlight)	English Spanish French	Automatic	Remote Indication of Alarm		Heater On	Tower Status (drying, switchover heat, cool, etc.)	Tower Swirch, Switchover Failure (low temp/high heater temp.)	Sensor Over-range & Under- range, temp humidity, dew point)	1
Standard	G	S	-			1	1	1	1	1	1	1	/	/	/
Option A	-	G	1	1	-	1	1	1	1	1	1	1	/	1	/
Option B	_	G	1	1	1	1	1	1	1	1	1	1	/	1	1
S - seasonal	G - Gu	aranteed	√ · ir	cluded											

KHP SERIES PRODUCT SPECIFICATIONS

	Inlet Flow 1	Heater			Dimension	s	Approximate	Inlet/Outlet
Model	@ 100 psig 100°F	Rated Output	Average	Н	W	D	Weight	Connections
	scfm	kW	kW		inches		lbs.	inches
300KHP	300	4.5	2.00	98	48	59	1400	11/2" NPT
400KHP	400	6.0	2.67	105	53	67	1800	11/2" NPT
500KHP	500	6.0	3.34	105	53	70	1800	2" NPT
600KHP	600	8.0	4.01	108	55	71	2000	2" NPT
750KHP	750	10.0	5.01	114	60	87	2400	3" FLG
900KHP	900	12.0	6.01	114	60	87	2400	3" FLG
1050KHP	1050	14.0	7.01	113	64	84	2900	3" FLG
1300KHP	1300	16.0	8.68	118	66	85	3400	3" FLG
1500KHP	1500	19.0	10.0	116	88	97	5100	3" FLG
1800KHP	1800	23.0	12.0	116	88	97	5100	3" FLG
2200KHP	2200	27.5	14.7	124	85	110	7800	4" FLG
2600KHP	2600	32.0	17.4	124	85	110	7800	4" FLG
3200KHP	3200	39.0	21.4	121	97	126	9000	6" FLG

INLET FLOW — Inlet Flow capacities shown in the Specifications Table have been established at an inlet pressure of 100 psig (7kgf/ cm²) and a saturated inlet temperature of 100°F (38°C). To determine maximum inlet flow at other conditions, multiply the inlet flow from the Specifications Table by the multiplier from Table 1 that corresponds to your operating conditions.

DEW POINT — Outlet pressure dew point at rated inlet conditions of 100 psig (7kgf/cm²) and 100°F (38°C) saturated. Dew point varies slightly at other conditions. Consult the factory to determine exact outlet pressure dew point at your operating conditions.

TABLE 1

Pressure			Inlet Te	mperature	°F (°C)		
psig	60	70	80	90	100	110	120
(fgf/cm2)	(15.6)	(21.1)	(26.7)	(32.2)	(37.8)	(43.3)	(48.9)
60 (4.2)	1.03	1.01	0.99	0.80	0.58	0.43	0.32
70 (4.9)	1.10	1.08	1.07	0.94	0.68	0.50	0.37
80 (5.6)	1.17	1.15	1.14	1.08	0.79	0.58	0.43
90 (6.3)	1.24	1.22	1.20	1.18	0.89	0.66	0.49
100 (7.0)	1.30	1.28	1.26	1.24	1.00	0.74	0.55
110 (7.7)	1.36	1.34	1.32	1.30	1.11	0.82	0.61
120 (8.4)	1.42	1.40	1.38	1.36	1.22	0.90	0.67
130 (9.1)	1.48	1.46	1.44	1.42	1.33	0.99	0.74
140 (9.8)	1.53	1.51	1.49	1.47	1.44	1.07	0.80
150 (10.6)	1.58	1.56	1.54	1.52	1.50	1.16	0.87

OPERATING CONDITIONS

KHP Models	Max. working pressure	Min. operating pressure	Max. inlet air temp.	Min. inlet air temp.	Max. ambient temp.	Min. ambient temp.
300-3200	150 psig	60 psig	120°F	40°F	120°F	40°F

SPX Dehydration & Process Filtration

4647 S.W. 40th Avenue Ocala, Florida 34474-5788 U.S.A Phone: 352-873-5123 • Fax: 352-873-5124 Email: kemp.sales@dehydration.spx.com

www.kemp-spx.com

© Copyright 2006 SPX Dehydration & Process Filtration. All Rights Reserved.

Improvements and research are continuous at SPX Kemp. Specifications may change without notice.

Bulletin: KIS-125_a

Performance data per CAGI Standard ADF 200 for Dual-Stage Regenerative Desiccant Compressed Air Dryer. Rating conditions are 100°F (37.8°C) inlet temperature, 100 psig (6.9 bar) inlet pressure, 100% relative humidity, 100°F (37.8°C) ambient temperature, and 5 psi (0.35 bar) pressure drop.

Consult factory for larger models.